Forward-Backward Synergistic Acceleration Pursuit Algorithm Based on Compressed Sensing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forward-Backward Synergistic Acceleration Pursuit Algorithm Based on Compressed Sensing

We propose the Forward-Backward Synergistic Acceleration Pursuit (FBSAP) algorithm in this paper. The FBSAP algorithm inherits the advantages of the Forward-Backward Pursuit (FBP) algorithm, which has high success rate of reconstruction and does not necessitate the sparsity level as a priori condition. Moreover, it solves the problem of FBP that the atom can be selected only by the fixed step s...

متن کامل

Compressed sensing signal recovery via forward-backward pursuit

Recovery of sparse signals from compressed measurements constitutes an l0 norm minimization problem, which is unpractical to solve. A number of sparse recovery approaches have appeared in the literature, including l1 minimization techniques, greedy pursuit algorithms, Bayesian methods and nonconvex optimization techniques among others. This manuscript introduces a novel two stage greedy approac...

متن کامل

Improvement of Forward-Backward Pursuit Algorithm Based on Weak Selection

Forward-backward pursuit (FBP) algorithm is a novel two-stage greedy approach. However once its forward and backward steps were determined during iteration, it would make computing time increased and affected the reconstruction efficiency. This paper presents a algorithm called forward-backward pursuit algorithm based on weak selection (SWFBP) by introducing threshold strategy into FBP algorith...

متن کامل

Sparsity Adaptive Matching Pursuit Detection Algorithm Based on Compressed Sensing for Radar Signals

In this paper, the application of the emerging compressed sensing (CS) theory and the geometric characteristics of the targets in radar images are investigated. Currently, the signal detection algorithms based on the CS theory require knowing the prior knowledge of the sparsity of target signals. However, in practice, it is often impossible to know the sparsity in advance. To solve this problem...

متن کامل

Structure-Constrained Basis Pursuit for Compressed Sensing

In compressive sensing (CS) theory, as the number of samples is decreased below a minimum threshold, the average error of the recovery increases. Sufficient sampling is either required for quality reconstruction or the error is resignedly accepted. However, most CS work has not taken advantage of the inherent structure in a variety of signals relevant to engineering applications. Hence, this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer and Communications

سال: 2017

ISSN: 2327-5219,2327-5227

DOI: 10.4236/jcc.2017.510004